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Abstract
Plus disease is characterized by abnormal changes in retinal vasculature of premature infants. Presence of 
Plus disease is an important criterion for identifying treatment-requiring cases in Retinopathy of Prematurity 
(ROP). However, diagnosis of Plus disease has been shown to be subjective and there is wide variability in the 
classification of Plus disease by ROP experts, which is mainly because experts have different cut-points for 
distinguishing the levels of vascular abnormality. This suggests that a continuous Plus disease severity score may 
reflect more accurately the behavior of expert clinicians and may better standardize the classification. The effect 
of using quantitative methods and computer-based image analysis to improve the objectivity of Plus disease 
diagnosis have been well established. Nevertheless, the current methods are based on categorical classifications 
of the disease severity and lack the compatibility with the continuous nature of the abnormal changes in retinal 
vasculatures. In this study, we developed a computer-based method that performs a quantitative analysis of 
vascular characteristics associated with Plus disease and utilizes them to build a regression model that outputs 
a continuous spectrum of Plus severity. We evaluated the proposed method against the consensus diagnosis 
made by four ROP experts on 76 posterior ROP images. The findings of our study indicate that our approach 
demonstrated a relatively acceptable level of accuracy in evaluating the severity of Plus disease, which is 
comparable to the diagnostic abilities of experts.
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Introduction
ROP is a leading cause of childhood blindness worldwide, 
characterized by abnormal retinal vascular development 
at the boundary of vascularized and avascular peripheral 
retina [1–3]. The incidence of ROP is approximately 9% 
in developed countries and 12% in developing countries, 
with the risk of blindness reaching 44% in low- and mid-
dle-income countries due to limited access to neonatal 
intensive care and retinal screening [4, 5]. Reports indi-
cate that the global prevalence of childhood and adult-
hood vision loss due to ROP continues to increase [6].

“Plus disease” defined by abnormal vascular dilation 
and tortuosity, is a critical indicator of severe ROP and a 
key factor in determining the need for treatment. While 
timely interventions such as laser photocoagulation and 
intravitreal bevacizumab can effectively treat ROP [7–9], 
accurate diagnosis remains challenging due to high inter-
examiner variability among even experienced clinicians 
[10–13]. This variability stems from the lack of standard-
ized thresholds for assessing vascular abnormalities, with 
experts often using different cut-points to diagnose Plus 
disease [14, 15].

To address these challenges, there is growing interest 
in artificial intelligence (AI) and computer-based meth-
ods for automated ROP diagnosis. However, most exist-
ing methods rely on discrete classifications (e.g., Normal, 
pre-Plus, or Plus), which fail to capture the continuous 
spectrum of vascular changes in ROP [14]. In this study, 
we propose a computer-based method that predicts a 
continuous severity score for Plus disease, offering a 
more objective and nuanced approach to ROP diagnosis. 
Our method leverages a modified U-Net architecture for 
vessel segmentation and incorporates vessel density as a 
novel feature, alongside traditional markers like dilation 
and tortuosity. This approach not only improves diagnos-
tic accuracy but also aligns with the real-world practices 
of ROP experts, who assess severity on a spectrum rather 
than rigid categories.

Additionally, our study is conducted on a domestic 
dataset from Farabi Eye Hospital, a leading center for 
ROP in Iran, providing region-specific insights into ROP 
diagnosis and treatment. By addressing the limitations 
of existing methods and leveraging local data, our work 
contributes to the global understanding of ROP while 
offering practical solutions for resource-limited settings. 
The integration of this method into telemedicine plat-
forms could expand access to ROP screening and reduce 
the burden on healthcare systems, ultimately improving 
outcomes for premature infants at risk of blindness.

Methods
Ethics
The study adhered to the principles outlined in the Dec-
laration of Helsinki and received approval from the 

institutional review board of Tehran University of Medi-
cal Sciences. Written informed consent was obtained 
from the parents of all patients involved in the study, 
granting permission for imaging and participation in the 
research.

Subjects and reference standard diagnosis
A database of 76 wide-angle posterior retinal images was 
established, each corresponding to different preterm 
infants acquired during routine clinical care. The subjects 
included 27 female and 49 male infants with an average 
birth weight of 1305 g ± 427 g and an average gestational 
age of 29.3 weeks ± 3 weeks. These infants were examined 
at Farabi Eye Hospital in Tehran, Iran, between January 1, 
2019, and December 30, 2020, and met published criteria 
for ROP screening. All images were captured using a Ret-
Cam device with dimensions of 1200 × 1600 pixels. Four 
ROP expert graders independently categorized selected 
images into five levels of severity: “Normal,” “pre-Plus,” 
“Plus1,” “Plus2,” and “Plus3,” assigning integer scores of 
1 through 5, respectively. A reference standard diagnosis 
(RSD) was defined for each image as the majority score 
given by the four experts. In cases of discordant scores, 
these were adjudicated in group sessions involving all 
four experts to determine the standard diagnosis. A web-
based user interface was created to streamline the grad-
ing process and eliminate potential biases.

Image selection and analysis
Difficulties associated with retinal imaging in infants, 
such as smaller eyes, less developed pupils, pressure on 
the globe during image capture, poor fixation, motion 
blurring, and uneven illumination, often result in low-
quality images [16, 17]. To address concerns regarding 
image quality, an expert excluded low-quality images 
from the dataset.

Vessel segmentation
Vessel segmentation was performed using a modified 
U-Net encoder/decoder network [18]. For training pur-
poses, 80 images were enhanced using the Contrast-
Limited Adaptive Histogram Equalization (CLAHE) and 
were corrected for uneven illumination. Vessel masks 
were created by experts using a Graphical User Interface 
(GUI) previously developed for semi-automated retinal 
vessel segmentation in fundus images [19]. The network 
was trained using 2,736 image patches of size 128 × 128 
pixels along with their corresponding masks. Patches 
were made around the centers of randomly selected 
bifurcation points. This method helped creating an effi-
cient data set of image patches and avoid picking less 
informative patches. 80% of the patches were used for 
training, and the remaining 20% were used for valida-
tion. Unlike conventional U-Net architectures that use 
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pixel-wise cross-entropy loss functions, we employed the 
Tversky loss function [20], which better measures over-
lap between segmented regions. Morphological opening 
with a structuring element of 200 pixels was applied to 
eliminate small false-positive regions on the mask pro-
duced by the network. This approach achieved a segmen-
tation accuracy of 91% in terms of BF score on a separate 
test dataset of 20 images. The GUI was used to correct 
errors in the masks produced by the automatic segmen-
tation and to mark optic disc borders (Figure 1).

Quantification of vessel characteristics
Arterial tortuosity is a key component of the ROP inter-
national classification system for diagnosing Plus disease 
[21]. We quantified vessel tortuosity using the squared-
derivative-curvature method [22], which estimates tor-
tuosity as the integral of the square of the derivative of 
curvature divided by the arc length of the vessel segment. 
This method is more accurate than the arc-to-chord ratio 
method, as it accounts for the entirety of the vessel net-
work geometry [23]. Using the mentioned method in this 
study, we were also able to calculate point-based curva-
ture through the vessel segments. It is shown in recent 
studies that point-based curvature of the vessels is also 
significantly increased in Plus disease [24, 25]. Detailed 
explanation on the calculation of the curvature-based 
tortuosity can be found in Sharafi et al. [19, 24]. Addi-
tionally, vessel dilation was quantified by calculating the 

average vessel diameter within a region extending three-
disc diameters (3DD) away from the optic disc border.

In previous studies, the density of retinal vessels has 
been extensively addressed as a potential marker of ROP 
[26–28], especially in relation to Plus disease [24, 28]. 
Thus, in addition to assessing tortuosity and dilatation, 
we also looked at the vessels’ density as a potential indi-
cator of Plus disease. The ratio of the number of pixels 
located on the vessels over the remaining pixels in the 
entire vascularized region was used to calculate the ves-
sels density for each image.

Statistical analyses were performed to assess the effec-
tiveness of each feature in distinguishing severity levels.

Regression model
The main objective of this study was to develop an algo-
rithm to predict a continuous vascular abnormality index 
as a measure of Plus severity. Initially, a set of 10 features 
characterizing aspects of vessel tortuosity, dilation, and 
density across various retinal regions was retrieved. To 
prioritize features with greater discriminatory power, 
Neighborhood Component Analysis (NCA) for regres-
sion was utilized [29]. Ultimately, a linear regression 
model was trained to predict the severity score of Plus 
disease using four selected features: F1) maximum vessel 
diameter within 3DD, F2) average tortuosity of vessel seg-
ments in 3DD, F3) vessel density across the entire image, 
and F4) average of the top 1% point-based curvature 
values in the entire image. Figure 2, depicts a schematic 

Fig. 1  Outputs of our vessel segmentation method. (a) Selected bifurcation points marked by yellow dots used as the centers of the patches in a sample 
image. (b) Preprocessed version of the image, ”a” using CLAHE algorithm. (c) Three patches and their corresponding masks extracted from image “b”. (d) A 
sample image input to the trained network. (e) Predicted vessel mask of image “d” by the network. (f) Vessel mask after making correction on the output 
of the network by an expert
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representation of the suggested technique, together with 
sample outputs observed at each step.

Results
Inter-expert variability and experts’ agreement
To evaluate the agreement among the four ROP experts 
in grading the images, we calculated weighted kappa 
(linear) statistics for both inter-expert agreement and 
individual expert agreement with the reference stan-
dard diagnosis (RSD). The inter-expert agreement, as 
measured by weighted kappa, ranged from 0.42 to 0.63, 
indicating moderate to substantial agreement among 
the graders. The individual expert agreement with RSD 
showed higher weighted kappa values, ranging from 0.61 
to 0.8, suggesting strong agreement between individual 
experts and the reference standard. The MSE values for 
individual experts ranged from 0.1521 to 0.4153, with G1 
showing the lowest MSE, indicating the highest consis-
tency with the average score. To visualize these results, 

Figure 3 illustrates the inter-expert agreement, individual 
expert agreement with RSD, and the MSE values. The fig-
ure highlights the variability in expert diagnoses and the 
influence of the different cut-points for assessing Plus 
severity in a categorical scoring systems.

To each level of the severity, an integer number from 1 
to 5 was assigned as follow: “Normal” = 1, ‘’pre-Plus” = 2, 
‘’Plus1” = 3, ‘’Plus2” = 4, Plus3” = 5. Then an average score 
for each image was calculated based on the assigned 
numbers.

To make an overall comparison between our 5-level 
grading method and the conventional 3-level grading 
method, we extracted a 3-level grading data from our 
original 5-level grading data by considering grades given 
as either of “Plus1”, “Plus2”, or “Plus3” to an aggregated 
“Plus” grade. Figure 4a and b demonstrate the range of 
diagnoses for individual images, ordered by RSD for 
5-level and 3-level grading methods respectively. Each 
column is associated with an individual image ranked as 

Fig. 2  Schematic of the proposed method and sample outputs at each step. Skeletonization, and values for diameter and curvature are shown for a small 
vessel segment within the image. Curvature values at each point of the segment are shown by a colormap. (Modified from Sharafi et al. [24])
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most severe (dark blue) to less severe (light blue) by each 
of the 4 experts.

Impact of vascular measures
In accordance with the preceding section, four image fea-
tures F1 through F4 were used to train a regression model 
to predict a continuous-valued severity score. Results of 
comparing the different groups of images based on the 
mentioned features are shown in Figure 5. To show the 
efficiency of each feature in discerning any pairs of sever-
ity levels, t-tests between mutual levels of severity were 
conducted. As a complementary data to Figure 5., Table 1 

summarizes the p-values associated with each of the fea-
tures in discerning each pairs of severity levels. Rows of 
the table includes pairs of the severity levels and each col-
umn corresponds to a feature.

Regression analysis
Using selected features, F1 to F4, we trained a lin-
ear regression model to predict Plus severity index as a 
range of continuous values from 1 (less severe) to 5 (most 
severe). Figure 6 shows 10 sample images, their corre-
sponding feature values, RSDs, the average scores, and 

Fig. 4  Diagnostic classification of Plus disease by 4 experts based on 5-level (a) and 3-level (b) classification methods. (a) Each column represents an 
image ranked as 1(Normal), 2(pre-Plus), 3 (Plus1), 4 (Plus2), 5 (Plus3). (b) Each column represents an image ranked as 1 (Normal), 2 (pre-Plus), 3 (Plus). RSD 
depicts the Reference Standard Diagnosis for each image, and avg. score depicts continuous-valued scores based on average of the expert classifications

 

Fig. 3  Inter-expert agreement, individual expert agreement with RSD, and MSE against the average score. The figure shows the weighted kappa (linear) 
for inter-expert agreement (left chart) and individual expert agreement with RSD (middle chart), along with the MSE values (right chart) for individual 
experts. The x-axis represents the grader/expert pairs (E1E2, E1E3, etc.) and individual experts (E1, E2, etc.), while the y-axis represents the weighted kappa 
values and MSE scores
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the regression model’s out puts (two samples per each 
severity level are shown).

To assess the effectiveness of the suggested regression 
model, we employed an Added Variable Plot to illustrate 
the association between the model’s output and the pre-
dictor variables. The resulting plot is depicted in Figure 7-
a. Slope of the fit line and the confidence interval bound 
shows the explanatory power of the regression model.

Moreover, we evaluated the accuracy of our regres-
sion model using a 5-fold cross validation and calculating 
MSE and Mean Absolute Error (MAE) of the model out-
put against the average scores as a gold standard. MSEs 
and MAEs of each expert’s diagnosis were also calculated 
and compared with the MSE and MAE of the regression 
model respectively.

The comparison is briefly presented in Figure 7-b. 
According to the data presented, MSE and MAE of 
the regression model are 0.23 ± 0.07 and 0.38 ± 0.05 

Table 1  Results of t-tests applied on mutual levels of 
plus severity based on the four selected features. P-values 
corresponding to significant differences are depicted as follow: p 
< 0.05: *; p < 0.01: **; p < 0.001: ***

p-values
Severity levels Diameter Tortuosity Density Curvature
‘Normal’ ‘pre-Plus’ 0.1449 0.0518 0.1059 0.0031 **
‘Normal’ ‘Plus1’ 0.0010 ** 0.0293* 0.0017** 0.0001 ***
‘Normal’ ‘Plus2’ 6.0e-05 *** 0.0006 *** 5.0e-05 *** 7.9e-08***
‘Normal’ ‘Plus3’ 0.0005 *** 1.0e-05 *** 7.0e-05 *** 2.0e-05 ***
‘pre-Plus’ ‘Plus1’ 0.0046 ** 0.0099 ** 0.0290* 0.0002 ***
‘pre-Plus’ ‘Plus2’ 4.0e-05 *** 1.6e-06*** 2.0e-05 *** 9.0e-08 ***
‘pre-Plus’ ‘Plus3’ 0.0017 ** 6.06e-08 *** 4.7-e06 *** 0.0003 ***
‘Plus1’ ‘Plus2’ 0.1438 0.0262 * 0.0126 * 0.3502
‘Plus1’ ‘Plus3’ 0.0783 0.1331 6.0e-05 *** 0.3371
‘Plus2’ ‘Plus3’ 0.2825 0.7749 0.0130 * 0.4013

Fig. 5  Comparison between the values of each extracted feature, (i.e. F1 to F4) and the five levels of the reference standard (values are standardized). 
a) Maximum of the vessel diameter in a region including 3 diameters away from the optic disk border (3DD). b) Average of the tortuosity of the vessel 
segments in 3DD region. (c) Vessel density measured at the vascular region of the retina. (d) Average of top 1% point-based curvature values. Blue circles 
illustrate the outlier datapoints. Red circles depict mean value of the features in each level of disease severity
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respectively. This indicates that the model outperformed 
two of the experts in terms of its predictive performance.

Discussion
The diagnosis of ROP remains challenging due to its 
subjective nature, particularly in the assessment of Plus 
disease. While wide-field retinal imaging, such as Ret-
Cam, has improved access to ROP screening, diagnos-
tic variability persists even among experts [12, 13]. This 
variability arises from differences in the interpretation 
of vascular abnormalities, such as tortuosity and dila-
tion, and the lack of standardized thresholds for diagnos-
ing Plus disease. Our study addresses these challenges 
by proposing a computer-based method that quantifies 
vascular abnormalities and predicts a continuous sever-
ity score, offering a more objective approach to ROP 
diagnosis.

While quantification of vessel characteristic is well-
established in previous studies, our study introduces 

several technical innovations tailored for the specific 
application of Plus disease severity assessment in ROP. 
First, we modified the U-Net architecture by employing 
the Tversky loss function instead of the traditional pixel-
wise cross-entropy loss. This modification improved 
the segmentation accuracy when applied to our dataset. 
Additionally, we implemented an improved preprocess-
ing step that not only enhanced the contrast of vessels 
against background retina, but also corrects uneven illu-
mination, ensuring more reliable vessel segmentation 
even in low-contrast regions.

Another key contribution of our method is the incor-
poration of vessel density as a feature in the regres-
sion model. While vessel dilation and tortuosity are the 
established criteria for diagnosing Plus disease, our find-
ings reveals that vessel density (specially vessel struc-
ture located closed to the vascularized side of ridge 
lines) can unintentionally influence expert judgments. 
This observation highlights the potential for additional 

Fig. 6  Feature values, RSD, average scores, and the model outputs corresponding to 10 sample images in the dataset (two samples per each severity 
level are shown)
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vascular features to improve the accuracy of automated 
systems. It further validates the results of earlier stud-
ies concerning the alterations in vessel density in ROP 
[26–28]. Although vessel density is not currently a stan-
dard criterion, its inclusion in our model demonstrates 
how supervised AI systems can capture subtle patterns 
in expert-labeled data, even beyond the established diag-
nostic criteria. We are currently conducting further stud-
ies to explore how experts may be influenced by vessel 
anomalies beyond dilation and tortuosity, which could 
lead to new insights into diagnostic biases and improve 
the robustness of automated systems.

In this study we introduced a 5-level grading sys-
tem including “Normal”, “pre-Plus”, “Plus1”, “Plus2”, and 
“Plus3” and assigned numbers 1 to 5 to each of the levels 
to calculate an average score of severity for each image. 
The rationale for implementing a 5-level severity grading 
system instead of 3-level system, can be comprehended 
by considering the following factors:

1-The existence of Plus disease in ROP signifies a con-
tinuous range of vascular abnormalities. This implies that 
there is considerable variation in the severity of the con-
dition among patients, and a three-level measurement 
may not sufficiently encompass this range of variability 
[30].

2. The implementation of a multi-level grading system 
has the potential to enhance the precision and depend-
ability of diagnostic procedures. It enables a more 

nuanced measure of disease progression, which can be 
essential in deciding the best treatment strategy [12, 16, 
30].

Moreover, this method of grading helped us to calcu-
late a more accurate average score of severity as a gold 
standard for training a regression model compared to a 
3-level grading system in which Normal, pre-Plus, and 
Plus levels are assigned numbers 1,2, and 3.

A significant contribution of our study is the devel-
opment of a continuous severity index for Plus disease 
through a regression model. In contrast to the majority of 
current methods that depend on discrete classifications 
(e.g., Plus, pre-Plus, or Normal), our approach reflects 
the continuous nature of vascular changes in ROP. This 
is particularly important because Plus disease progres-
sion and treatment response are gradual phenomena, and 
a continuous index provides a more nuanced and accu-
rate representation of disease severity [30]. By predicting 
a continuous score, our model aligns more closely with 
the real-world diagnostic practices of ROP experts, who 
often assess severity on a spectrum rather than rigid cat-
egories. This innovation offers a more flexible tool for 
monitoring disease progression and treatment outcomes.

Another contribution of our study is the use of a 
domestic dataset acquired from Farabi Eye Hospital, a 
leading center for ROP in Iran. This dataset allowed us 
to evaluate the agreements among experienced ROP 
specialists in a specific geographical region, where ROP 

Fig. 7  (a) Added Variable Plot for the proposed regression model. Fit-line equation, adjusted-value data, and confidence bound are shown in the legend. 
(b) A comparison between the losses of the algorithm and experts’ diagnoses against the images’ average scores as a gold standard. Error bars shows the 
standard deviation of the MSE and MAE values yielded for the regression model
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prevalence, screening practices, and imaging setups may 
differ from those in other parts of the world. Local stud-
ies like ours are crucial for understanding regional varia-
tions in ROP diagnosis and treatment, as they reveal 
unique challenges and opportunities for improving clini-
cal workflows. By leveraging this dataset, we were able 
to develop a model that is tailored to the specific needs 
of our clinical setting, while also contributing to the 
global understanding of ROP. Our findings underscore 
the importance of region-specific research in advancing 
ROP screening and diagnosis, particularly in resource-
limited settings where access to experienced specialists is 
limited.

Our findings are consistent with previous studies that 
have explored automated methods for ROP diagnosis. 
Table 2 presents a comparison of our approach with the 
well-known method introduced for Plus disease detec-
tion in recent years. Our approach demonstrates unique-
ness compared to other methods as it has established a 
five-level grading system that produces a continuous-val-
ued Plus severity index via a regression model.

Despite the mentioned contributions, our study has 
some limitations. First, the dataset was relatively small 
and derived from a single clinical site, which may limit 
the generalizability of the results. Future studies should 
incorporate larger, more diverse datasets to improve the 
model’s robustness and applicability across different pop-
ulations. Second, the algorithm’s performance was evalu-
ated using high-quality images, and its effectiveness on 
lower-quality images remains uncertain. This is a critical 
consideration for real-world applications, where image 
quality can vary significantly. Finally, factors such as 
imaging angle, pressure from the RetCam contact cam-
era, and the administration of mydriatics may introduce 
measurement bias, which should be addressed in future 
work.

In conclusion, in the current study we developed a 
novel computer-based method for diagnosing Plus dis-
ease in ROP by outputting a continuous severity score, 
addressing the limitations of traditional discrete clas-
sifications. Key contributions include a modified U-Net 
architecture with Tversky loss and CLAHE prepro-
cessing, achieving 91% segmentation accuracy, and the 
introduction of vessel density as a novel feature that 
improves regression accuracy. Unlike existing meth-
ods, our model provides a continuous severity index (1 
to 5), aligning with the gradual progression of vascular 
abnormalities and enabling precise monitoring. Using 
a domestic dataset from Farabi Eye Hospital, we pro-
vided regional insights into ROP diagnosis, contributing 
to global understanding. The regression model outper-
formed two of four experts, with selected features dem-
onstrating strong discriminatory power, particularly 
between pre-Plus and Plus1 levels. Future work should Ta
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incorporate larger datasets and assess diagnostic biases. 
This approach enhances diagnostic accuracy, reduces 
expert variability, and supports clinical decision-making. 
Integrated into telemedicine platforms, it could expand 
access to ROP screening, improving outcomes for at-risk 
infants.
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